Retinoids regulate the repairing process of the podocytes in puromycin aminonucleoside-induced nephrotic rats.
نویسندگان
چکیده
The foot processes forming the slit diaphragm are disrupted in diseases associated with proteinuria. Although they are often repairable, regulators for the repairing process remain unknown. By extrapolating from the fact that vitamin A is essential for the nephrogenesis, this study examined whether or not injured podocytes in the middle of the repairing process require retinaldehyde dehydrogenase type 2 (RALDH2), one of the key enzymes to produce all-trans-retinoic acid (ATRA). RALDH2 was dramatically upregulated in podocytes of puromycin aminonucleoside-induced nephrosis (PAN nephrosis) rats. On day 5 of PAN nephrosis, RALDH2 showed the remarkable induction, whereas glomerular expression levels of nephrin and midkine, one of the ATRA target genes, were downregulated. Daily administration of ATRA ameliorated proteinuria, which was accompanied by the improvement in the effacement of the foot processes and by the induction of nephrin and midkine. In contrast, recovery from PAN nephrosis was delayed in rats fed with a vitamin A-deficient diet. Consistently, the promoter region of human nephrin gene (NPHS1) contained three putative retinoic acid response elements (RARE) and showed the enhancer activity in response to ATRA in a dose-dependent manner. This transcriptional activation was regulated through the receptors for retinoids because BMS-189453, an antagonist to the retinoid receptors, counteracted it in a dose-dependent manner. In conclusion, active metabolites of vitamin A, especially ATRA produced by RALDH2 play relevant roles during the repairing process of injured podocytes. The results obtained from PAN nephrosis rats might be applicable to human renal diseases.
منابع مشابه
Induction of antioxidant enzymes in murine podocytes precedes injury by puromycin aminonucleoside.
BACKGROUND An imbalance between the generation of reactive oxygen species (ROS) and antioxidant defense mechanisms has been suggested to play an important role in podocyte injury in nephrotic syndrome. Experimental nephrotic syndrome induced by injection of puromycin aminonucleoside (PAN) into rats is a well-established model of nephrotic syndrome, and can be largely prevented by pretreatment w...
متن کاملOver-expression of adenosine deaminase in mouse podocytes does not reverse puromycin aminonucleoside resistance
BACKGROUND Edema in nephrotic syndrome results from renal retention of sodium and alteration of the permeability properties of capillaries. Nephrotic syndrome induced by puromycin aminonucleoside (PAN) in rats reproduces the biological and clinical signs of the human disease, and has been widely used to identify the cellular mechanisms of sodium retention. Unfortunately, mice do not develop nep...
متن کاملCalcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models
Podocyte injury and the appearance of proteinuria are features of minimal-change disease (MCD). Cyclosporin A (CsA) and tacrolimus (FK506) has been reported to reduce proteinuria in patients with nephrotic syndrome, but mechanisms remain unknown. We, therefore, investigated the protective mechanisms of CsA and FK506 on proteinuria in a rat model of MCD induced by puromycin aminonucleoside (PAN)...
متن کاملTrehalose, an mTOR Independent Autophagy Inducer, Alleviates Human Podocyte Injury after Puromycin Aminonucleoside Treatment
Glomerular diseases are commonly characterized by podocyte injury including apoptosis, actin cytoskeleton rearrangement and detachment. However, the strategies for preventing podocyte damage remain insufficient. Recently autophagy has been regarded as a vital cytoprotective mechanism for keeping podocyte homeostasis. Thus, it is reasonable to utilize this mechanism to attenuate podocyte injury....
متن کاملHsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction.
Nephrotic syndrome (NS) is characterized by structural changes in the actin-rich foot processes of glomerular podocytes. We previously identified high concentrations of the small heat shock protein hsp27 within podocytes as well as increased glomerular accumulation and phosphorylation of hsp27 in puromycin aminonucleoside (PAN) -induced experimental NS. Here we analyzed murine podocytes stably ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2003